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Abstract. Robots executing force controlled tasks require accurate per-
ception of the applied force in order to guarantee safety. However, dy-
namic motions generate non-contact forces due to inertial forces. These
non-contact forces can be regarded as disturbances to be removed such
that only forces generated by contacts with the environment remain.
This paper presents an observer based on recurrent neural networks that
estimates the non-contact forces measured by a force-torque sensor at-
tached at the end-effector of a robotic arm. The recurrent neural network
observer uses signals from the joint encoders of the robotic arm and a
low-cost inertial measurement unit to estimate the wrenches (i.e. forces
and torques) generated due to gravity, inertia, centrifugal and Coriolis
forces. The accuracy of the proposed observer is experimentally evalu-
ated using a force-torque sensor attached to the end-effector of a seven
degrees of freedom arm.

1 Introduction

Robots performing tasks in unknown and dynamic environments where contact
must be controlled, such as physical human-robot collaboration, haptic con-
trol (e.g. bilateral teleoperation) and locomotion; are required to accurately and
timely perceive their environment. In particular, estimation of external contact
forces is necessary to guarantee, not only the success of the task, but also a safe
behavior of the robot. In order to estimate contact forces, force-torque sensors are
usually attached to the robot’s end-effector to measure wrenches generated while
interacting with the environment. However, as the force-torque sensor measures
both internal and external forces, it is necessary to first estimate the internal
(non-contact) forces caused by gravity, inertia, Coriolis and centrifugal forces.
Once these non-contact forces have been estimated, they can be then subtracted
from the force-torque sensor output to obtain the pure external (contact) forces,
as shown in the block diagram in Figure 1b.

Besides non-contact forces described above, force-torque sensors are also sen-
sitive to noise errors caused by changes in temperature, cross-talking between
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(a) Experimental setup showing
the force-torque sensor and the
IMU mounted on a KUKA robot.

(b) Recurrent neural network observer to esti-
mate the non-contact forces (o: robot frame, E:
end-effector frame, S: sensor frame, IMU : IMU
frame).

Fig. 1: Experimental setup and our proposed force observer.

force signals in different axes and the deformation of sensor’s top-plate because of
tightening that causes errors in measurements [1]. Several works have focused on
estimating non-contact forces on a force-torque sensor by incorporating acceler-
ation signals. For instance, Garćıa et al. used an observer based on a state-space
system that included the dynamics of the robot [2]. Equations based on the in-
ertia matrix of a known load attached to the force-torque sensor were used in [3]
to estimate non-contact forces. Similarly, Kubus and Wahl estimated the iner-
tial parameters of the attached load by identification, then the corresponding
internal forces are calculated using the Newton-Euler formulation [4].

Instead of requiring accurate estimation of parameters such as the inertia
matrix, mass and the center of mass position, we propose to train a recurrent
neural network (RNN) using the robot’s proprioceptive information and a low-
cost accelerometer to estimate directly the non-contact forces. This decision is
motivated by the recent success in applying RNNs to estimate forces in robotic
tasks, such as the estimation of a force distribution map on a person’s limb gen-
erated by contacts with a hospital gown [5] or the detection of contact transients
during a snap-fit assembly task [6].

2 Technical Approach

The wrench output of the force-torque sensor can be expressed as:

W = WNC +WC =
[
F ,Γ

]T
(1)

WNC = [W gravity,W inertia,W coriolis+centrifugal]
T is the disturbance wrench

affecting the sensor due to the non-contact forces and torques fNC and τNC

respectively. WC is the pure contact wrench due to contact forces and torques
fC and τC respectively. F and Γ are the force and torque values expressed in
the sensor frame S respectively as:

F = fNC + fC (2)
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Γ = τNC + τC (3)

Using Newton-Euler approach, fNC and τNC can be expanded and equations
(2) and (3) can be rewritten as:

F = mα−mg + ω̇ ×mc+ ω × (ω ×mc) + fC (4)

Γ = Iω̇ + ω × (Iω) +mc×α−mc× g + τC (5)

where ω is the angular velocity vector of the sensor with respect to its frame,
α and ω̇ are the linear and angular acceleration vectors respectively, g is the
vector corresponding for gravity, m is the mass of the load, c is its center of mass
coordinates vector and I is a 3 × 3 symmetric matrix representing the inertia
matrix in the sensor frame.

In the standard control approaches, when accuracy is not critical, the sensor
measurements in equations (2) and (3) are used in their default form taking both
contact forces and torques and the non-contact ones as feedback signal to the
controller. On the other hand, for accurate force control, non-contact forces need
to be estimated as they can lead to fault reference force values fed back to the
controller. In order to estimate these forces precisely, the ten inertial parameters
of the load should be known, namely: m, c and the values of I. In the literature,
researchers used identification process to obtain these values and then use them
in equations (4) and (5) to calculate the non-contact forces and torques. However,
the accuracy of estimating non-contact forces and torques based on identification
is dependent on the accuracy of the center of mass position of the load c and
the calculation of the kinematic vectors α, ω and ω̇ in the same frame.

To overcome these inaccuracies, we propose an observer based on a recurrent
neural network (RNNOB) to estimate directly non-contact forces independently
of the twist and acceleration transformations. Since the involved signals are
sequential, an RNN architecture using Long Short-term Memory (LSTM) units,
as described in [7], is ideal to correlate the sensor’s kinematics to its wrench
output. Figure 1 shows our experimental setup along with a block diagram of
the RNNOB showing how the non-contact forces are estimated and then canceled
from the force-torque sensor measurements.

3 Experiments: Data Collection and Testing

As shown in equations (4) and (5), the non-contact forces are directly related to
angular velocities and accelerations, linear accelerations and the sensor pose with
respect to the gravity vector. Thus, the observer must be trained with data cov-
ering states of the force-torque sensor that represent a high diversity of motions.
To this end, the data was collected using a KUKA LWR-4 arm with the ATI
Gamma FT sensor and an Adafruit (L3GD20H + LSM303) inertial measurement
unit (IMU) mounted on its wrist. First, the manual data was collected by setting
the robot controller to gravity compensation mode and then moving the wrist
manually to various poses in the workspace with random velocities and accelera-
tions. Additionally, more data was collected automatically (e.g. without human
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intervention) by moving the robot between random points in its workspace using
various trapezoidal velocity profiles. The manual data was collected in six trials,
each about four minutes long and the automatic data was collected in ten trials
with an average time of two minutes each. These datasets were then combined
into one training dataset, where one trial of each of the manual and automatic
data were separated to create a test dataset. The validation of the RNN during
training used 20% of the training dataset.

Additional to the testing set described above, the proposed observer was
validated by four tests to ensure its accuracy in estimating gravity, inertia, cen-
trifugal and Coriolis forces. In the first test, the force-torque sensor was rotated
by 180 degrees around its z -axis, which is perpendicular to the gravity vector
g, to experience the gravitational force along the x and y-axes . A linear hori-
zontal motion was used to test the effect of inertia along the sensor’s z -axis. To
estimate the centrifugal forces effect on the sensor’s z and y-axes, the robot was
commanded to follow a circular path on the horizontal plane. Finally, to test for
Coriolis forces and their effect on the sensor’s z andy-axes, the robot executed
a circular path with its radius decreasing over time in the horizontal plane.

4 Results

To validate our RNN observer, we trained a model using information derived
from the joint encoders, namely the orientation (o) and twist (v, ω); and the
linear acceleration from the IMU (IMUα). This model provided a good balance
between fast response and accurate estimation, as opposed to only using data
from the IMU sensor or the joint encoders. To build this model, an architecture
with two hidden layers, with 15 and 10 LSTM units respectively, was trained
over 50 epochs for all models and the sequence length of the input layer was of
100 time steps (0.2 seconds). In the output layer, we applied Stochastic Gradi-
ent Descent with a learning rate of 0.01 to minimize the mean square error of
the regression problem. A hyperbolic tangent sigmoid function was used as the
activation function between the layers.

The root mean square error on the test datasets of the automatic and manual
motions described in Section 3 are shown in Table 1. The force estimation of
the RNN observer using the inputs of both, encoders and accelerometer, for a
previously unseen manual trajectory compared against the output of the force-
torque sensor can be seen in Figure 2. Some plots are omitted due to lack of
space, nevertheless Figure 3 shows a comparison of the estimated and actual
force the test motions.

Figures 2 and 3 show that the force magnitudes are very small (< 2.5N),
as there is no load attached to the force-torque sensor and the mass of its top-
plate is small. Nonetheless, the proposed observer is able to accurately estimate
the non-contact forces in highly dynamic situations (Figure 2). Moreover, the
validation of the observer against gravitational, inertial, Coriolis and centrifugal
forces is confirmed by the corresponding experimental results shown in Figure
3. Besides, concerning the noise seen in the figures, its important to highlight
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Table 1: Root mean square errors (RMSE) of the automatic and manual test
data sets.

Automatic
Force
(N)

Torque
(N ·m)

X 0.0696 0.0016
Y 0.0434 0.0023
Z 0.0253 0.0004

Manual
Force
(N)

Torque
(N ·m)

X 0.1715 0.0018
Y 0.1653 0.0026
Z 0.0828 0.0008
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Fig. 2: RNNOB force estimation for an unseen manual trajectory.

here that both the training and the testing data used are raw to maintain the
generality of the observer. However, depending on the application, the user can
filter the input data of the model for accurate and smooth estimation. The
observer is promising and can be directly applied to heavier loads (e.g. robotic
hand) which will be the focus of the future experiments of this research.

5 Conclusions

We have presented a model-free observer using a recurrent neural network that
estimates non-contact forces even when the force-torque sensor is subject to high
dynamic motions. The proposed observer proved to accurately estimate effects of
inertia, gravity, centrifugal and Coriolis forces on the force-torque sensor without
the need of an identification process. The observer was able to overcome impre-
cise readings of the pose, twist and acceleration of the force-torque sensor; that
were used as inputs. Moreover, the results obtained using the neural network ob-
server are more precise compared to the ones obtained using identification and
mentioned in the literature. Thus, for accurate and precise force control, the
estimated non-contact forces can be subtracted from the raw sensor feedback
ensuring a pure contact force reading. In the near future, we will extend our
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(a) Rotational motion.
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(b) Circular motion.
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(d) Coriolis motion.

Fig. 3: Force estimation of different tests on the affected axes. (a) Rotation around the
z -axis, (b) circular motion, (c) linear motion along the z -axis and (d) Coriolis motion.

observer by attaching a heavy load to the robotic arm’s end-effector to perform
force control in a highly dynamic scenario.
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