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Abstract: Mobile manipulators are intended to be deployed in domestic and industrial
environments where they will carry out tasks that require physical interaction with the
surrounding world, for example, picking or handing over fragile objects. In-hand slippage, i.e.
a grasped object moving within the robot’s grasp, is inherent to many of these tasks and thus,
a robot’s ability to detect a slippage is vital for executing a manipulation task successfully. In
this paper, we develop a slip detection approach which is based on the robot’s tactile sensors, a
force/torque sensor and a combination thereof. The evaluation of our approach, carried out on
the Care-O-bot 3 platform, highly suggests that the actions and motions performed by the robot
during grasping should be taken into account during slip detection for improved performance.
Based on this insight, we propose an in-hand slip detection architecture that is able to adapt

to the current robot’s actions at run time.
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1. INTRODUCTION

Mobile manipulators such as ARMAR (see ?) or the Care-
O-bot 3 (see ?7) are intended to be deployed in domestic
and industrial environments to support humans in their
work. Even though, these environments are highly dy-
namic, the robots are required to successfully and robustly
perform a wide range of tasks. The first step to deal with
such environments is their perception. Therefore, modern
robots, as the ones introduced before, are equipped with
a multitude of sensors, not only exteroceptive, but also
proprioceptive ones to create a coherent representation of
their environment and detect external disturbances. The
major problems here are 1) the limitations inherent to the
sensors; 2) the different characteristics and modalities of
the data measured by the sensors; and &) the fusion of the
measurements considering the previous two problems.

Especially, highly delicate manipulation and grasping
tasks that require physical interaction, such as handling
of food and fragile goods or handing over objects to hu-
mans, demand the precise reaction to disturbances at run
time. One such disturbance, which we investigate in this
paper, is in-hand slippage, i.e. a grasped object moves
within the robot’s grasp. To detect in-hand slippage, our
robots are equipped with tactile sensors in their hands,
but also force/torque sensors in their arms. However, the
involved sensors are affected by the actions which the robot
performs, for instance, a force/torque sensor is sensitive
to motion whereas a tactile sensor might not be affected
at all. Also the reactions to accommodate for detected
slippage are context-dependent. For instance, when the
robot carries an object and feels slippage, it should grasp
tighter to avoid loosing the object. Contrary, when a robot

hands over an object to a human, a more suitable reaction
is to release the grasped object so that the human can take
the object.

The contributions of this paper are three-fold:

e We develop three types of slip detectors based on the
tactile and force measurements of the robot as well
as a fusion of these.

e Then, we experimentally show how the performance
of each slip detector varies with the task currently
executed by the robot. In this context, the perfor-
mance of the slip detectors is evaluated on a Care-O-
bot 3 platform, where we measure the robustness by
comparing the number of successful and unsuccessful
slip detection results.

e Finally, we propose an adaptive slip detection ap-
proach which enables the run-time selection of slip
detectors suitable for the current task.

Following this introduction, Section 2 describes the slip
detectors used in this work. The context-adaptive ap-
proach and the associated architecture is proposed in Sec-
tion 3. Section 4 presents the related work and discusses
the approach. Finally, our conclusions are summarized in
Section 5.

2. SLIP DETECTION

In this section we describe three slip detectors using tactile
sensing, force sensing and a combination of them.



2.1 Approach

Based on the study of human tactile sensing, ? proposed
to equip robot manipulators with sensors able to perceive
different signals (e.g. vibration, contacts). For instance,
a tactile sensor estimates a pressure distribution while
a force/torque sensor is able to measure external forces
and torques. Furthermore, ? showed that slip detection
can be performed with a combination of force/torque and
tactile sensors using a Coulomb friction model. However, it
requires knowledge of the friction coefficients which might
not be available when handling unknown objects.

We propose an approach to detect slippage of a grasped
object that does not require a priori information about the
object being manipulated. In this context, a slip is defined
as the object being translated within the grasp (e.g. if the
object is pulled down this will result in a downwards slip,
see Fig. 1 and Fig. 2). Torque and tactile sensors are used
to compute signals that indicate a possible slippage.

Based on the torque sensor in each joint, the KUKA
Lightweight Robot 4 (LWR4), see ?, can estimate the
wrench (force and torque) applied to the arm’s end-
effector. The wrench is measured at a rate of 50 Hz. For
grasping and manipulating objects, the robot is equipped
with the three-fingered Schunk dexterous hand SDH-2.
Each finger has two tactile sensors built by ? to measure
pressure caused by contacts. The tactile sensors operate
at an average rate of 30 Hz.

Force slip detection ~ We assume a slip occurs whenever a
force is exerted in the right direction (e.g. downwards with
respect of the grasp frame). A fyirection signal is computed
as follows:

f!]“lsp = R;iz:gr : fsensor (1)

fdirection = fgrasp : (fxa fy7 fz)T (2)

Where fsensor is the force measured w.r.t. the sensor
frame, and R;7037" represents the orientation of the grasp
w.r.t. the sensor frame. The orientation depends on the
hand and grasp type. (fz, fy and f.) selects the direction
in which an object can slip up or down within the hand. For
example, as shown Fig. 2 this vector is then set to (1, 0, 0).
Note that the torque components, for this particular setup,
are ignored since their measurements were in the range of
noise level (see Fig. la). However, the force components
were sufficient to detect a slip.

Tactile slip detection  To compute the slipsqcrire Signal we
apply the algorithm proposed by ? to each tactile sensor,
which estimates the tangential force on the sensor caused
by a sliding pressure (e.g. a grasped object slipping).
Specifically, a two-dimensional convolution is computed
between a tactile sensor’s pressure matrix P[k] of size
(m x n), and its previous pressure matrix, P[k — 1]; the
output is the convolved matrix, C[k], of size (r x s), with
r=2m—1) and s = (2n — 1).

We then compute the tactile flow in each axis using the
following equations, adapted from ?, as:
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Where a and b defined as: a = [—(n—1), ... ,—(n — s)]
and b = [—(m—1),...,—(m —r)]", and represent the
cell positions in the X and Y direction of the pressure
matrix, respectively. Furthermore, p and q are vectors
representing the mean value of columns and rows of the
convolution matrix C[k], respectively. Defined formally as,
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Finally, the tactile flow is found using the results of
equation 3,

flowiaerite = || flow[k] — flow[k — 1] (6)
with flow = [flow,, flow,]. This computation can be
applied to tactile sensors of different shapes, provided

their output is a two dimensional array. Having N tactile
sensors, we define slip;qctile as:

i=1,...,r (5)

N
Sliptactile == Z E [P[’ﬂ]] : flowtactile[n] (7)
n=1

Where E[P[n]] is the pressure average and flowigetire[n]
is the tactile flow of the n-th tactile sensor. This linear
combination allows tactile sensors with higher pressure
values to contribute more information regarding how an
object is slipping from the grasp, since sensors with lower
intensity values, arising from spurious contacts, might not
provide an accurate measure of slippage. Note that the
flowsgetile, as defined in equation 6, is an absolute value
and thus the direction of the slippage is not considered to
produce the slipiacrize (see Fig. 1b).

Combined slip detection  The slip.ompbined 18 computed
by combining both tactile and force slip signals as
Sliptactile Z threShOldt(mtile) A

slip up it (
(slipforce > thresholdforce)
(

slip = < slip if  (slipractite > thresholdiqetite) N
downwards (sliporce < —thresholdforce)
n/a otherwise

Where the thresholdiqctite and thresholdorce, Tepresent
numerical values! for detecting a slip based on the
slipractite and Slip force, respectively. Both of these thresh-
olds are chosen experimentally.

2.2 Ezperiments & Evaluation

The three slip detectors were evaluated using two different
grasp shapes, namely a grasp that uses all three fingers
and one that only uses two fingers. The thresholdyorce
and thresholdqeite Were set to 1.5 and 5e 3, respectively.
Three different objects were used in the experiments. A
coffee paper cup, an empty Pringles can and a Sprite
bottle. Seven actions were performed on each object ten
times, producing 60 tests per action. The seven actions are
described as follows:

grasp: the fingers of the gripper close to hold the object

1 These values can be chosen to increase the sensitivity of the slip
detectors, e.g. lower values result in higher false positives.
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(b) Tactile slip signal computed using Equation 7.

Fig. 1. A slip downwards occurring at approximately 2.5
seconds. (a) shows the raw output of the force/torque
sensor and (b) presents a computed signal based on
the tactile array sensors. Slip down perceived by the
force (a) and tactile (b) sensors.

move base: the robot’s base moves back-and-forth ap-
proximately 20 cm while holding the object

release: the fingers of the gripper open to release the
object

rotate counter-clockwise: the grasped object was ro-
tated counterclockwise within the grasp

rotate clockwise: grasped object was rotated clockwise
within the grasp

slip downwards: the grasped object was pulled down to
simulate the object slipping down (shown in Figure 2)

slip up: the grasped object was pulled up from the grip-
per.

Only slip downwards and slip up were considered as a
slip. The results for the three detectors are summarized in
Table 1 and Table 2.

2.8 Preliminary Results & Discussion

The performance of each slip detector varies considerably
depending on the action, e.g. the tactile slip detector
outputs a slip whenever grasping an object, as shown
in Table 1. Contrary, the force slip detector achieved a
perfect accuracy for detecting actual slips as displayed
in Table 2, however its performance was poor when no
slippage occurred, particularly in the move base action
(see Table 1). The combined slip detector had the lowest
accuracy for actual slips, but its performance was by far
the best when no slippage occurred. The experiments
also showed that the slip detectors achieve a similar
performance (£5%) regardless of the object and grasp.
Already in the few experiments we have performed with

Fig. 2. Robot platform used for the evaluation.

Table 1. Performance rate of slip detectors in
detecting a true slippage.

False positives
Tactile | Force | Combined
grasp 60/60 10/60 0/60
move base 1/60 51/60 0/60
release 50/60 1/60 1/60
rotate counter-clockwise 39/60 6/60 1/60
rotate clockwise 50/60 9/60 4/60

Table 2. Performance rate of slip detectors in
detecting a true slippage.

True positives
Tactile | Force | Combined
slip downwards 53/60 60/60 49/60
slip up 50/60 | 60/60 47/60

the inclusion of actions (i.e. grasp, release and move base),
we can see that the action has a major influence on the
performance of the slip detection.

3. ROBUST SLIP DETECTION VIA
CONTEXT-BASED ADAPTATION

The evaluation of the stand-alone slip detectors in the
previous section indicates that the robustness of slip de-
tection clearly benefits from the run-time adaptation of
the manipulation architecture based on the action that
the robot performs. At the core, the proposed architec-
ture (see Fig. 3) consists of a control loop where a grasp
controller commands the robot’s hand to grasp an object.
As input, the grasp controller receives, on the one hand,
the grasp to be executed (e.g. desired joint values) and,
on the other hand, a signal if the object slips within the
hand. As described in the previous section, the slip signal
is derived from the data provided by the robot’s tactile
sensors and the force/torque applied to the robot’s arm. To
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Fig. 3. The core of the architecture consists of the slip detector (red) to analyze the robot’s state and the grasp controller
(green) which commands the robot. At run time, a specific slip detector is selected by the detector selection pipeline
(violet). Similarly, a grasp controller can be selected online, given the robot’s task context (yellow).

accommodate for the different robot’s actions, we propose
the design of multiple slip detectors and grasp controllers
which are in turn selected at run time with the knowledge
of the robot’s action and task context.

3.1 Representation and Storage of Slip Detectors

To make different slip detectors available during run time,
we need to model and store them in an explicit manner.
We employ the Robot Perception Specification Language
(RPSL) introduced in ? to model the various slip detec-
tors and their corresponding properties. The RPSL is a
domain-specific language (DSL) which provides suitable
abstractions to model robot perception systems such as
those introduced in this paper (see Fig. 4). In particular,
with RPSL we can model multi-stage slip detectors in
the form of directed acyclic graphs where sensor com-
ponents (e.g. tactile and force sensors) are root nodes
and processing components are leaf nodes. Further, RPSL
provides means to model the data in- and output types
employed in the slip detectors such as pressure matrices
of the tactile sensors. Beyond structural information the
RPSL enables the attachment of contextual information
about the appropriateness of a slip detector for a certain
context. In this work, the appropriateness is expressed as a
ranking of symbols where each symbol represents a motion
context such as grasp, move_base and release. Similarly
to our previous work (see ? and ?), the attachment of
contextual information is performed during design time
and after some preliminary experimentation when more
domain knowledge is available.

3.2 Monitoring Motion

To retrieve the current motion context we perform sym-
bol grounding by employing the Conceptual Space (CS)
knowledge representation framework, as proposed by 7.
The CS framework is supported by RPSL and allows
to ground different motion contexts such as grasp,
move_base and release through the notion of concepts,
domains and dimensions. In the CS framework, concepts

are convex regions in a set of domains which are composed
of measurable dimensions. In the context of this work the
measurable dimensions are the joint values (velocities) for
each joint. This allows us to model for each concept a set
of prototypes encoding typical values. For example, the
prototype for the move_base concept has only zero-values
for each arm joint whereas the base joints are non-zero.
During run time, the motion monitor then computes for
each joint state sample the closest matching prototype by
employing the Euclidean distance as a metric.

8.8 Run-time Selection of Slip Detectors

To select a slip detector which is appropriate for the
current motion context we apply a simple, yet powerful
rule-based approach. During design time we devise a
set of decision rules where the motion context is part
of the condition and the selection of a slip detector is
part of the rule body. The slip selector also performs
the activation of slip detectors on an implementation
level. This happens only, if the selected slip detector is
not already activated. One might argue that activating
and deactivating components is unfeasible from a timing
perspective. However, as we have shown in ? activating and
deactivating system components in a time-critical robotic
application context is feasible.

8.4 Task-based controller adaptation

In parallel to the adaptation of the slip detection pipeline it
is also beneficial to select specific grasp controllers during
the robot’s run time. Here, we build upon our previous
work in 7, where we proposed a grasp controller that
reduces the exerted force on the grasp object. Obviously,
the exerted force is not the only criterion to be optimized
in grasping, but also the stability of the object within
the hand should be taken into account. This is achieved
by feeding the signal produced by the slip detector back
into the grasp controller. In a pick and place task the
feedback signal should be represented numerically so that
the grasp controller can adapt the grasp accordingly.



rpsl.sensor_component do
name "force_sensor"

add_port :out, "out_port", "wrench"
end
rpsl.processing_component do
name "slip_detection"
add_port :in, "in_port", "wrench"
add_port :out, "out_port", "force_slip"
end

rpsl.perception_graph do
name "force_slip_detector"
"out_port",
"slip_detection",
attach_prototype "task_context",

end
\ J

connect "force_sensor",
"in_port"
"move_base"

Fig. 4. An excerpt of the domain model of the force-
based slip detector represented in RPSL (see 7).
Two atomic components are modeled, namely a
force_sensor providing wrench data (out_port) and
a slip._detection component demanding wrench
data (in_port) and providing a slip signal (see
Sec. 2). Both components are connected in the
force_slip_detector yielding a structurally com-
plete specification of the force-based slip detector.
Note, the attached task_context expressing the suit-
ability of the force_slip_detector for scenarios
when the base is moving. Due to space reasons
the specification of the data types (e.g. wrench,
force_slip and task_context) is not shown.

However, for a hand-over task, it is already sufficient to
provide the grasp controller with a symbolic signal, where
upwards slip indicates that the robot should release the
object, whereas downwards slip means that the robot
should grasp the object more tightly. Further task-specific
controllers are, for example, required in tactile exploration
as proposed by 7?7, measuring object’s in-hand motion
(see ?7) or reactively placing a grasped object as shown
by 7.

In order to select an appropriate grasp controller, the robot
requires knowledge about the individual grasp controllers
which we also represent in RPSL. This is possible because
both, slip detectors and grasp controllers, share structural
properties which are general enough to be modeled with
RSPL. In addition the selector requires knowledge of the
task which the robot is about to perform. This task context
is represented symbolically, e.g. as hand_over, pick or
place. In contrast to the slip detector selection, the task
context does not have to be derived from the robot’s
motions. Instead, for instance, a knowledge base of the
robot can be queried for information about the current
task or a task planner, situated above the manipulation
pipeline in the robot control architecture, can provided
this information directly.

4. RELATED WORK AND DISCUSSION
4.1 Use cases

The ability to detect in-hand slippage can be helpful in
different use cases. One such use case is that of a grasp
controller (see ? and ?), where the grasp force exerted on
an object can be computed proportionally to a continuous

slip signal. A continuous slip signal is also required for
tasks such as measuring the in-hand motion of a grasped
object (see 7). On the contrary, a hand-over task might
only require a discrete slip signal, for instance, to detect
when a person is pulling the grasped object from the
robotic gripper. Similarly, a robot placing an object can
benefit from a discrete event signaling a slippage, i.e. the
object is in contact with a support surface and is thus
slipping from the grasp.

4.2 Limitations

As part of a critical discussion we also would like to outline
the main limitations of our approach:

e Up to now, we have not evaluated in how far the run-
time adaptation of the grasp controller and slip de-
tector influences the stability of the core control loop
stability. Should this turn out to be a critical issue, it
seems worthwhile to identify further knowledge and
annotate the model repository of slip detectors and
grasp controllers accordingly.

e Additionally, the task context is only represented
symbolically. Here, a more in-depth analysis of the
relationship between the task context and the grasp
controller selection could reveal further information
that allows to improve the selection.

e Even though, the current chosen rule-based approach
is simplistic in structure, we do not depend on it.
In fact, the adaptation mechanism could be replaced
with other adaptation methods (e.g. constraint satis-
faction etc.) as the knowledge to represent the context
and the slip detectors would remain the same.

4.3 Related Work

Although tactile sensing in robotics has been researched
for over two decades (see ?), it has recently been applied
to very diverse manipulation tasks. For instance, ? use
tactile information to execute corrective actions on a PR2
that improved the robot’s ability to grasp an object when
greater positional errors are present. Although usage of
tactile information improves the sensing capabilities of
a robot, it is the addition of different sensing modali-
ties that has proven to be a go-to solution to increase
a robot’s robustness in an uncertain and dynamic envi-
ronment (see 7). 7 present an example of multi-sensor
fusion, where they integrate tactile sensing with vision and
force signals to improve their robot’s ability to physically
interact with the environment (e.g. sliding a door open),
demonstrating the increase of robustness when using the
three modalities combined. Slip detection has been another
application where tactile sensing plays a major role; ?
increase the grip force of the robot when a slippage is
detected. Furthermore, Romano et al. propose a phase-
based architecture to address the task of grasping an
object and placing it in another location, where the phases
are detected based on information produced by tactile and
force sensors.

5. CONCLUSIONS

This paper presented an approach for run-time selection of
a slip detector with the best performance for the current



task being executed by the robot. More specifically, we
implemented three slip detectors based on tactile, force/-
torque signals and the fusion of these signals. A prelimi-
nary evaluation provided insights on how the performance
of the slip detection approaches depends on the action that
the robot executes. Based on these insights, we proposed
a context-adaptive architecture that improves the robust-
ness of the slip detection and is also able to select an
appropriate grasp controller based on the required task.
Future work will be focused on quantitatively evaluating
the run-time adaptation of the grasp controller, as well as
developing controllers required for different tasks as men-
tioned in Section 4. Furthermore, we would like to evaluate
different robot actions (e.g. arm motions) to observe their
impact on the developed slip detectors.
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