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Abstract. Robots capable of assisting elderly people in their homes
will become indispensable, since the world population is aging at an
alarming rate. A crucial requirement for these robotic caregivers will
be the ability to safely interact with humans, such as firmly grasping
a human arm without applying excessive force. Minding this concern,
we developed a reactive grasp that, using tactile sensors, monitors the
pressure it exerts during manipulation. Our approach, inspired by human
manipulation, employs an architecture based on different grasping phases
that represent particular stages in a manipulation task. Within these
phases, we implemented and composed simple components to interpret
and react to the information obtained by the tactile sensors. Empirical
results, using a Care-O-bot 3® with a Schunk Dexterous Hand (SDH-2),
show that considering tactile information can reduce the force exerted
on the objects significantly.

Keywords: Robot grasping, domestic robot, tactile feedback

1 Introduction

The percentage of people over 65 years in the world is projected to increase
from eight percent to twelve percent by the year 2030 [I], which will increment
further the already high demand of elderly care. To address this issue, global
leaders carried out a UN World Assembly on Aging in 2002 which had, as one of
its main topics, the objective of providing enabling and supportive environments
for the elderly [2].

As a solution to this workforce shortage of elderly care, the governments of
nations such as Japan, US and Germany have been encouraging the introduction
of robots in nursing homes. Recent efforts towards this goal can be seen in the
work of Nagai et al., which provides an analysis of the challenges to introduce
robots into these environments in [3]. Pineau et al. introduced a robot assistant
that autonomously guided the elderly and also reminded them of their schedules
[4]. In Germany, the Fraunhofer Institute for Manufacturing Engineering and
Automation (IPA) developed the Care-O-bot 3® with the objective of assisting
elderly people in domestic environments [5]. The need for such domestic service
robots can also be seen in the RoboCup@Home competition [6], especially the



“Emergency situation” scenario, where robots deal with an accident in a home
environment.

Despite the introduction of robots in domestic environments, their physi-
cal interaction with humans remains limited, a skill that is crucial for robots
to eventually become reliable caregivers. The robots have to operate safely in
these highly dynamic and uncertain environments. Manipulation under these
conditions, while extremely complicated for robots, is performed effortlessly by
humans. This proficiency achieved by humans, highly depends on their tactile
sensing abilities while executing manipulation tasks [7]. Based on this insight,
together with the improvement of tactile sensing technology, robotic researchers
have produced algorithms inspired by human tactile sensing [§], and used tactile
feedback to reactively adjust grasps [Q10]. Although most of these approaches
allow robots to interact physically in a domestic environment, their main concern
is manipulation of objects.

With the long-term goal of enabling a robot, namely a Care-O-bot 3®, to
safely interact with humans (e.g. guiding people with vision impairment in a
nursing home), we develop a grasping approach that considers the pressure ex-
erted during manipulation to prevent the application of excessive grasping forces.
The pressure information provided by the tactile sensors of the SDH-2 hand is
used as a feedback signal to control the fingers’ motion and react to contacts.
Aside from the tactile information, force-torque sensors of the manipulator are
used to enable the detection of contacts between the robot’s arm and its envi-
ronment. Furthermore, the high-level control of our implementation is based on
the phases observed in human manipulation.

To validate our work, we recorded empirical data of grasps on a set of ob jectsﬂ
with distinct features such as hardness, shape, and size. Our approach effectively
reduced the exerted force on the grasped objects, by at least, half of the original
force. In a particular case, the applied force was reduced by a factor of 20,
while still successfully executing the grasp. We also analyze the limitations of
this approach and compare its performance to an open-loop grasp approach.
An early version of this work has been demonstrated during the competitions
of RoboCup@Home German Open 2013 in Magdeburg and RoboCup@Home
World Championship 2013 in Eindhoven.

The remainder of the paper is organized as follows. Section [2] provides a
brief description on human grasp and the involved tactile information, as well
as current applications of tactile sensors in robotics. Section [3| describes our
approach and the hardware it uses. In section [ the evaluation method is detailed
and the results obtained are reported. A summary of the paper is presented in
section [

1 Although the motivation of this work is to ultimately grasp humans, due to safety
reasons, we evaluated our approach on objects.



2 Related Work

2.1 Human Manipulation

Johansson and Flanagan noticed the importance of tactile signals during ma-
nipulation by humans [7]. These tactile signals are denoted as tactile aﬁerentﬂ
by Johansson. They can end at skin level (type I) or, deeper, at the dermis
(type II); and they can have fast or slow frequency responses. Thus, the tactile
afferents used by the hand are: fast-adapting type I (FA-I), slow-adapting type
I (SA-I), fast-adapting type II (FA-II), and slow-adapting type II (SA-II). Be-
sides studying these tactile signals they analyzed the phases involved during a
manipulation task. The phases of a simple pick and place task, as described by
Johansson in [7], are:

1. Reach: Fingers make contact with the object and FA-I afferents are acti-
vated.

2. Load: Enough force is applied to the object to obtain a firm grip. During
this phase the SA-I and SA-II afferents are triggered.

3. Lift: The object is lifted off the support surface and the FA-II afferents are
activated.

4. Hold: Forces are applied to the object to prevent its slippage. SA-I and
SA-IT afferents are activated in this phase.

5. Replace: The object makes contact with the support surface and the FA-II
afferents are triggered in this phase.

6. Unload: The fingers release the object and FA-I afferents are activated.

2.2 Tactile Sensing in Robotics

Robots with tactile sensors have recently been used in object recognition [11],
evaluation of grasp stability [12], and grasp adjustment. Our review of related
work focuses on the latter application.

Hsiao et al. [9] apply corrective actions, using the tactile information of a
PR2 gripper, to improve the location of the contacts. They define corrective
actions to open the PR2 gripper when a contact is sensed, and moving the wrist
in the direction of the sensed contact. This approach is able to compensate for
position errors to yield better stability of the grasp. Prats [I0] also improved
the performance of a robotic control system by adding tactile information as
feedback. Their previous approach only considered visual and force signals for
feedback. The tactile feedback drives a controller that moves three degrees of
freedom of a robotic arm to open a slide door. Romano et al. [§] developed
an approach, inspired also on human manipulation, that uses tactile sensors to
design low-level signals and control loops that mimic the tactile afferents FA-
I, SA-I, FA-II. However, this implementation is specific to the PR2 gripper, a
parallel jaw gripper with only one actuator. We therefore seek to extend their
work to control a gripper with more than one degree of freedom, e.g. a SDH-2.
Compliant grasps have also been achieved without the use of tactile sensing [13].

2 A tactile afferent is a conduct that conveys signals to the brain.



3 Approach

3.1 Hardware

The SDH-2 is a servo-electric 3-finger gripping hand with seven degrees of free-
donﬁ (DoF). The three fingers are actuated by two joints each, one is rooted to
the hand’s palm and the other is in the middle of the finger. Both of these joints
have a range of motion of -90° to +90°, and enable the extension and flexion
of the fingers. The seventh actuator allows two fingers to rotate simultaneously
in opposite directions and generates an abduction or adduction movement. The
range of motion of this actuator reaches 0° to +90°. Figure [1| depicts how these
motions are executed by both a human finger and an SDH finger. Moreover, each
finger has two phalanges: a prozimal phalanz which is closer to the palm, and a
distal phalanx which is further away from the palm. Each phalanx is equipped
with a tactile sensor matrix.
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Fig. 1: Flexion/extension and abduction/adduction motions of (a) the human
hand [14] and (b) the SDH-2.

The six tactile sensors from Weiss Robotics [I5] provide the contact infor-
mation. This information is represented as a matrix that either contains 6 x 14
tactile elements (tactels), for the proximal phalanges, or 6 x 13 tactels for the
distal phalanges. Each tactel produces an integer value between 0, when there
is no pressure, and 4095, the maximum pressure value that represents 250K Pa.
The tactels in the proximal phalanges have identical sizes of 3.4 x 3.4 mm. How-
ever, the sizes of the tactels in the distal phalanges vary slightly, because the
tactile arrays are curved. For simplicity of the calculations, the size of all tactels
is assumed to be the same. Fig. [2]shows a diagram of a tactile sensor together
with a visualization of a contact sample.

The SDH-2 is mounted to a KUKA Lightweight Robot with seven DoF that
provides torque signals in each joint [16].

3.2 Tactile Signal Processing

Following the idea of considering the information produced by the tactile sensors
as grayscale images, as proposed in [12], we process the tactile data online and

3 http://www.schunk.com /schunk_files/attachments/SDH_DE_EN.pdf
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Fig. 2: Left: A diagram of a tactile sensor, right: the pressure profile of a contact.

offline. The online signal processing is used to monitor the pressure applied to a
grasped object, and the offline signal processing is used to calculate the exerted
force of the grasp. Both online and offline signal processing are detailed next.

Online processing The online signal processing uses the following algorithms:

— detect_contacts: Given a number of tactile arrays, with their respective
threshold values, it returns a Boolean array that indicates if a tactel is ex-
ceeding the contact threshold value. A 0 is assigned for no contact, and a 1
represents that a tactile array has a contact.

— detect_thresholds: This inverts the result of detect_contacts. I.e. a 0 in the
returned array, indicates a contact, while a 1 represents no contact.

Each element in the Boolean arrays controls the motion of a single phalanx.
The output of detect_contacts selects which phalanges to move, this is to only
move those phalanges that are in contact with the object (i.e. is used while the
phalanges are not moving). The output of detect_thresholds is used to stop the
movement of the phalanges that have reached the desired contact value.

Offline processing The offline processing is used after the hand has stopped
moving. We applied the steps applied by Li et al. [I7], namely:

— Threshold: For each tactile array, and their respective pressure thresh-
old, it sets the tactels below this threshold to zero. The application of this
thresholding is optional to remove low contact values, which may be caused
by pressure applied to an adjacent tactel. Due to the rubber layer covering
the sensor, pressure applied to a single tactel also activates its neighbors [I8§].

— Label: Using the connected-component labeling algorithm with a 4-con-
nectivity criteria [I9], it labels the contact regions in each tactile array. The
purpose of this step is to segment areas of contact for further classification
(e.g. determine the largest contact area or the strongest contact area).



— Extract: This step differs from the one described in [I7], by extracting the
strongest contact region instead of the largest contact region. The strongest
region is defined by its normal force. The normal force of each contact region
is calculated with the equation F' = P x A (where P represents a normalized
pressure of a contact region, and A is the area of the region). The region with
the highest normal force is selected as the strongest. The normalized pressure
P is calculated as the ratio of the maximum pressure range (250KPa) to the
maximum displayed value (4095 bits) times the average value of the active
tactels (i.e. tactels with a contact value greater than zero). The area A is
calculated by multiplying the individual area of a tactel times the number
of active tactels. As noted in section the size of the tactels on the distal
phalanges is assumed to be the same as on the proximal phalanges.

— Locate: For each tactile array, this step calculates the centroid of the
contact regions. The centroids are calculated, as suggested in [18], using the

raw moment formula:
Mpq = Z Z:L‘pyqf(m, y) (1)
z oy

where z and y represent the coordinates of a tactel in a tactile array and
I(x,y) is the intensity (i.e. pressure value) in tactel x,y. The order of 2 and
y is determined by p and ¢, respectively. A centroid can be then calculated
using:
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3.3 Architecture

Our architecture follows the human manipulation phases, as described by Jo-
hansson [7]. Figure |3 illustrates our architecture. Note that this architecture is
based on a pick-and-place task. When grasping a human, the 1ift/hold and
place phases will be different.

make_contact make_contact :
(el (distal) load lift/hold place M

Fig. 3: Phase-based architecture, inspired by human manipulation. The colored
boxes indicate the phases implemented in this work.

The make_contact phases move the phalanges (first the proximal phalanges,
followed by the distal phalanges) from their initial, open configuration, to a
desired closed configuration. Each phalanx is controlled by the loop shown in



Fig. [ where P is the pressure of the highest-valued tactel in the tactile sensor,
Prcs is the pressure threshold and 6 is the desired joint velocity. The controller
is a simple bang-bang controller that sets 6 = 0 when P,,, < 0. Once all joint
velocities have been set to zero the make_contact phase ends and the load
phase is started. During the load phase each joint, except for the one generating
abduction/adduction movements, is also actuated using the pressure control loop
shown in Fig. [] The make contact phase shapes the hand according to the
object, while the load phase regulates the pressure to achieve a stable grasp.

When the load phase has finished, the object is grasped and the 1ift/hold
phase raises the arm to lift the object from a surface and it holds the object
during the transportation to the placement pose. Next, the place phase moves
the arm downward, while using a force monitor to detect an abrupt change
of force exerted on the hand, that indicates a contact between the object an a
surface. This allows to safely place the object on the surface. Finally, the unload
phase opens the hand to release the object.

—(O—— Controller ——{ SDH-2

Tactile sensor

Fig. 4: Control loop using tactile feedback.

Each of these phases is composed by simpler components, which can be re-
placed without modifying the overall structure of a phase, thus separating con-
cerns as described in [20]. These components implement algorithms that perform
computations and communicate their outputs publishing messages through ROS
topics [21].

4 Experimental Evaluation

To evaluate the performance of our reactive grasp we compared it to the cur-
rent approach, an open-loop grasp, which does not consider the grasp force as
feedback. First, we describe the materials involved in the experiments, then the
procedure is detailed. Finally, we present the results obtained from the experi-
mentation.

4.1 Materials

The platform used to carry out the experimental evaluation was the Care-O-bot
3 [5], with a KUKA Ligthweight Robot (LWR4) [16]. The end-effector located



at the end of the LWR4 is a SDH-2. Furthermore, 18 objects were selected to
represent the following three features:

— Hardness: The objects were regarded as deformable (D) when the open-
loop grasp would either leave a mark on the object, or change its shape
or size. If no mark or modification was observed, the object was labeled as

non-deformable (N).

— Shape: The shape of an object was considered to be one of the following:
prismatic (Pr), spherical (Sp) and cylindrical (Cy).
— Size: An object was classified as small (S), medium (M), or large (L).

A sample of the selected objects can be seen in Fig. [f] and their classification

is shown in Table [6

Fig.5: A sample of the test objects.
Missing objects in the figure are:
dictionary, orange, melon and soda

can (full).

4.2 Procedure

Fig.6: Categorization of the test ob-
jects, according to their hardness (D/N),
shape (Pr/Sp/Cy) and size (S/M/L).
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For each test object, the robot’s arm started in a predefined pose (see Fig.
. Both approaches were executed three timesﬂ for each of the six locations

4 The reactive approach was partially executed. The phases executed were: make con-
tact(proximal/distal), load and lift phase



shown in Fig. [7B] Spherical and cylindrical objects were centered on the marked
locations, while prismatic objects were placed on the marked locations along
their edges. These locations were chosen to cover a range of positions within the
grasp, e.g., close/away from the wrist and close to the fingers/thumb.

(a) Arm position used throughout the evalua- (b) Grasp locations.
tion.

Fig. 7: Experimental procedure.

4.3 Results

The results obtained by the experiments conducted on 18 different objects, using
both the open-loop grasp and the reactive grasp, are summarized next. Table
shows the success rate of both approaches. Based on the performance of the
grasps, two aspects were further analyzed: the grasp force applied by each grasp,
and the cause of each failed grasp. The grasp forces of the objects that had a
100% success rate with both approaches are displayed in Table [2 The force on
each object is the average of all trials (i.e. 18 trials). This average represents the
sum of the forces on each tactile sensor.

To conclude this section, the 84 failed grasps along with their causes are
presented in Table [3| The majority of the reactive approach failures (i.e. no
grasp) were caused by the phalanges pushing the objects out of the grasp (27
failed grasps), and by the phalanges not receiving their required stop commands,
either because the specified joint limits could not be reached or the desired grasp
force could not be reached (15 failed grasps). The overall success rate for the
reactive grasp approach was 78.64%, and of 94.17% for the open-loop grasp
approach.



5 Conclusions and Future Work

This paper presented a software architecture that emulates the human manipula-
tion phases together with an approach that significantly reduces the grasp force
through the use of tactile feedback. The approach was specifically tuned for the
SDH-2. The pressure information of all experiments, was recorded and made
available at https://github.com/jsanch2s/tactile_info . However, the suc-
cess rate of our reactive grasp approach was not as high as the open-loop grasp
approach (78.64% vs 94.17%), mainly due to the following limitations:

— The tactile sensors do not completely cover the fingers, causing the reactive
grasp to not reach the desired contact values.

— Low sensitivity of the tactile sensors hinders the ability to detect light con-
tacts (this accounts for 40% of the failures). Integrating the signals of a
force-torque sensor signals, as demonstrated in [22] could improve contact
detection.

— Insufficient force on the grasp caused objects to slip or rotate within the
grasp, caused by low values of the contact thresholds.

Table 1: Success rate of both approaches, the open-loop grasp (OLG) and the
reactive grasp (RG).

OLG RG

Trials | Success Rate | Success Rate
Chocolate milk 18 18 100 % 18 100 %
Bathroom cleaner 18 18 100 % 15 83.3%
Milk carton 18 18 100 % 18 100 %
Small ball 18 18 100 % 17 94.4%
Medium ball 18 18 100 % 16 88.9%
Large ball 18 18 100 % 18 100 %
Soda can (empty) 18 18 100 % 18 100%
Chips can 18 18 100 % 17 94.4%
Soup 18 18 100 % 15 83.3%
Alloy profile® 3 3 100 % 0 0%
Dictionary 18 18 100 % 18 100 %
Dried coffee 18 18 100 % 5 27.8%
Candle 18 5 27.8% 5 27.8%
Orange 18 13 72.2% 10 55.6%
Melon 18 18 100 % 3 16.7%
Soda can (full) 18 18 100 % 16 88.9%
Coffee bottle 18 18 100 % 16 88.9%
Noodles 18 18 100 % 18 100 %

® The alloy profile was tested only three times, in position 1, for each grasp approach.
The other positions were not tested, because in those positions the alloy profile was
damaging the tactile sensors.
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Table 2: Grasp forces applied by both approaches, in Newtons.

oLG RG _oree
reduction

Chocolate milk | 12.3 6.8 44.9%
Milk carton| 10.5 0.5 95.4%
Dictionary | 23.5 6.6 71.7%
Noodles| 32.1 8.9 72.3%
Soda (empty) | 18.6 5.5 70.7%
Large ball| 43.4 7.1 83.6%

Table 3: Categorization of failures.
OLG RG
No grasp| 0 (0%) 42(63.6%)
No lift | 6 (33.3%) 4 (6.1%)
Rotated| 0 (0%) 5 (7.6%)
Slip |12 (66.7%) 15 (22.7%)
Total 18 66

Future work will be focused on the implementation of the offline signal
processing and the improvement of individual components to detect contacts
that tactile sensors cannot (e.g. using force-torque sensors), improve the loca-
tion of contact points using arm motions as Hsiao et al. demonstrated in [9],
and detect slippage by analyzing temporal readings from the tactile sensors.
A video showing the capabilities of our reactive grasp is available at https:
//www.youtube.com/watch?v=f JoSDVKSdmO . The video shows a slower version
due to safety reasons.
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